Reducing the gradient artefact in simultaneous EEG-fMRI by adjusting the subject's axial position
نویسندگان
چکیده
Large artefacts that compromise EEG data quality are generated when electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are carried out concurrently. The gradient artefact produced by the time-varying magnetic field gradients is the largest of these artefacts. Although average artefact correction (AAS) and related techniques can remove the majority of this artefact, the need to avoid amplifier saturation necessitates the use of a large dynamic range and strong low-pass filtering in EEG recording. Any intrinsic reduction in the gradient artefact amplitude would allow data with a higher bandwidth to be acquired without amplifier saturation, thus increasing the frequency range of neuronal activity that can be investigated using combined EEG-fMRI. Furthermore, gradient artefact correction methods assume a constant artefact morphology over time, so their performance is compromised by subject movement. Since the resulting, residual gradient artefacts can easily swamp signals from brain activity, any reduction in their amplitude would be highly advantageous for simultaneous EEG-fMRI studies. The aim of this work was to investigate whether adjustment of the subject's axial position in the MRI scanner can reduce the amplitude of the induced gradient artefact, before and after artefact correction using AAS. The variation in gradient artefact amplitude as a function of the subject's axial position was first investigated in six subjects by applying gradient pulses along the three Cartesian axes. The results of this study showed that a significant reduction in the gradient artefact magnitude can be achieved by shifting the subject axially by 4 cm towards the feet relative to the standard subject position (nasion at iso-centre). In a further study, the 4-cm shift was shown to produce a 40% reduction in the RMS amplitude (and a 31% reduction in the range) of the gradient artefact generated during the execution of a standard multi-slice, EPI sequence. By picking out signals occurring at harmonics of the slice acquisition frequency, it was also shown that the 4-cm shift led to a 36% reduction in the residual gradient artefact after AAS. Functional and anatomical MR data quality is not affected by the 4-cm shift, as the head remains in the homogeneous region of the static magnet field and gradients.
منابع مشابه
Reducing the Gradient Artefact in Simultaneous EEG-fMRI by altering the Subject’s Axial Position
Large artefacts which compromise EEG data quality are generated when electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are carried out concurrently. The gradient artefact produced by the time-varying magnetic field gradients is the largest of these artefacts. Although average artefact correction (AAS) and related techniques can remove the majority of this artefact, t...
متن کاملNon-Linear Filter for Gradient Artefact Correction during Simultaneous EEG-fMRI
Parallel to the breakthroughs on the usage of simultaneous EEG-fMRI in neurocognitive studies and research, the occurrence of artefacts in the EEG signal induced within the fMRI scanner constitutes one of the challenges to be overcome in order to broaden the range of applications of such a technique. It is the case of the gradient artefact, provoked by the variation of gradient magnetic fields....
متن کاملTowards motion insensitive EEG-fMRI: Correcting motion-induced voltages and gradient artefact instability in EEG using an fMRI prospective motion correction (PMC) system
The simultaneous acquisition of electroencephalography and functional magnetic resonance imaging (EEG-fMRI) is a multimodal technique extensively applied for mapping the human brain. However, the quality of EEG data obtained within the MRI environment is strongly affected by subject motion due to the induction of voltages in addition to artefacts caused by the scanning gradients and the heartbe...
متن کاملReference layer artefact subtraction (RLAS): A novel method of minimizing EEG artefacts during simultaneous fMRI
Large artefacts compromise EEG data quality during simultaneous fMRI. These artefact voltages pose heavy demands on the bandwidth and dynamic range of EEG amplifiers and mean that even small fractional variations in the artefact voltages give rise to significant residual artefacts after average artefact subtraction. Any intrinsic reduction in the magnitude of the artefacts would be highly advan...
متن کاملReal-time rejection of gradient and pulse related artefact (GRA and PRA) from electroencephalographic signals recorded during functional magnetic resonance imaging (fMRI)
Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are two imaging techniques used to study the dynamical activity of the human brain. Although complementary, i.e. EEG has a high temporal resolution while fMRI provides precise volumic information, the simultaneous use of both techniques introduces large artefacts in the EEG recordings. These artefacts are consequences...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- NeuroImage
دوره 54 3 شماره
صفحات -
تاریخ انتشار 2011